

Answer all the questions below and then check your answers.
Use the equation box opposite to help you answer the questions below.

1. What is room temperature and pressure (RTP)?
2. What volume will I mole of any gas occupy at RTP?
3. Complete the table below:
A_{r} information $C=12 \quad O=16 \quad H=1 \quad N=14$

gas	$\mathrm{A}_{r} / \mathrm{M}_{r}$	Volume occupied at RTP/dm ${ }^{3}$
Carbon dioxide $\left(\mathrm{CO}_{2}\right)$		
Butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$		
Nitrogen $\left(\mathrm{N}_{2}\right)$		

4. What volume will 0.5 moles of methane occupy at RTP?
5. What volume will 4 g of hydrogen gas $\left(\mathrm{H}_{2}\right)$ occupy at RTP?
6. What volume will 40 g of helium gas occupy at RTP?
7. What volume will 0.5 mol of carbon monoxide (CO) occupy at RTP?
8. Hydrogen gas burns according to the equation below:

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(1)}
$$

a. What volume of oxygen gas is needed to completely burn 89 of hydrogen gas?
9. Methane burns according to the equation below:

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

a. What volume of carbon dioxide is produced at R.T.P from the complete combustion of 64 g of methane?

Answers

Answer all the questions below and then check your answers.

1. What is room temperature and pressure (RTP)? $20^{\circ} \mathrm{C}$, I atmosphere pressure
2. What volume will 1 mole of any gas occupy at RTP? $24 \mathrm{dm}^{3}$

Ar information $C=12 \quad O=16 \quad H=1$
$N=14$

gas	$\mathrm{A}_{r} / \mathrm{Mr}_{r}$	Volume occupied at RTP/dm ${ }^{3}$
Carbon dioxide $\left(\mathrm{CO}_{2}\right)$	44	24
Butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$	58	24
Nitrogen $\left(\mathrm{N}_{2}\right)$	28	24

4. What volume will 0.5 moles of methane occupy at RTP?
$V=n \times 24 \quad V=0.5 \times 24=12 \mathrm{dm}^{3}$
5. What volume will 4 g of hydrogen gas $\left(\mathrm{H}_{2}\right)$ occupy at RTP?
$n=$ mass $/ A_{r}=4 \mathrm{~g} / 2=2$ moles $\quad v=2 \times 24=48 \mathrm{dm}$
6. What volume will 40 g of helium gas occupy at RTP?
$n=$ mass $/ A_{r}=40 \mathrm{~g} / 4=10 \mathrm{moles} \quad v=10 \times 24=240 \mathrm{dm}^{3}$
www.science-revision.co.uk
7. What volume will 0.5 mol of carbon monoxide (CO) occupy at RTP?
$v=0.5 \times 24=12 \mathrm{dm}^{3}$
8. Hydrogen gas burns according to the equation below:

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

4 g of hydrogen 32 g of oxygen $\quad 36 \mathrm{~g}$ of water
a. What volume of oxygen gas is needed to completely burn 89 of hydrogen gas?
A_{r} of hydrogen is 2.4 g of hydrogen need 32 g of oxygen, since from equation they react in the ratio $2: 1$. So 8 g of hydrogen will need 64 g of oxygen, this is 2 moles or $48 \mathrm{dm}^{3}$ of oxygen
9. Methane burns according to the equation below:

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(1)}
$$

a. What volume of carbon dioxide is produced at RTP from the complete combustion of 64 g of methane?
M_{r} of methane is 16 . So moles of methane present: $n=$ mass $/ A_{r}=64 / 16=4$ moles of methane burn. From the equation 1 mole of methane produces 1 mole of carbon dioxide. 64 g of methane is 4 moles, so this will produce 4 moles of carbon dioxide. I mole occupies $24 \mathrm{dm}^{3}$, so 4 moles will occupy $96 \mathrm{dm}^{3}$

