

Answer all the questions below and then check your answers.

Use the equation box opposite to help you answer the questions below.

- 1. What is room temperature and pressure (RTP)?
- 2. What volume will 1 mole of any gas occupy at RTP?
- 3. Complete the table below:
- Ar information C=12 O=16 H=1 N=14

volume of gas =	number of moles x 24dm³
volume of gas =	mass of gas M, of gas x 24dm³

gas	Ar/Mr	Volume occupied at RTP/dm³
Carbon dioxide (CO2)		
Butane (C ₄ H ₁₀)		
Nitrogen (N ₂)		

- 4. What volume will 0.5 moles of methane occupy at RTP?
- 5. What volume will 4g of hydrogen gas (H2) occupy at RTP?
- 6. What volume will 40g of helium gas occupy at RTP?
- 7. What volume will 0.5 mol of carbon monoxide (CO) occupy at RTP?

www.science-revision.co.uk

8. Hydrogen gas burns according to the equation below:

$$2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(l)}$$

- a. What volume of oxygen gas is needed to completely burn 8g of hydrogen gas?
- 9. Methane burns according to the equation below:

$$CH_{4(g)}$$
 + $2O_{2(g)}$ \longrightarrow $CO_{2(g)}$ + $2H_2O_{(l)}$

a. What volume of carbon dioxide is produced at R.T.P from the complete combustion of 64g of methane?

Answers

Answer all the questions below and then check your answers.

- 1. What is room temperature and pressure (RTP)? 20°C, 1 atmosphere pressure
- 2. What volume will 1 mole of any gas occupy at RTP? 24 dm³
- 3. Complete the table below:

$$A_r$$
 information $C=12$ $O=16$ $H=1$ $N=14$

volume of gas = number of moles x 24dm³
volume of gas = $\frac{\text{mass of gas}}{M_r \text{ of gas}} \times 24 \text{dm}^3$

gas	A _r /M _r	Volume occupied at RTP/dm³
Carbon dioxide (CO2)	44	24
Butane (C ₄ H ₁₀)	<i>5</i> 8	24
Nitrogen (N ₂)	28	24

4. What volume will 0.5 moles of methane occupy at RTP?

$$V = n \times 24$$
 $V = 0.5 \times 24 = 12 dm^3$

5. What volume will 4g of hydrogen gas (H_2) occupy at RTP?

$$n = \frac{M}{r} = \frac{4g}{2} = 2 \text{ moles}$$
 $v = 2 \times 24 = 48 \text{ dm}$

6. What volume will 40g of helium gas occupy at RTP?

$$n = mass/A_r = 40g/4 = 10 \text{ moles}$$
 $v = 10 \times 24 = 240 \text{dm}^3$ www.science-revision.co.uk

7. What volume will 0.5 mol of carbon monoxide (CO) occupy at RTP?

$$V = 0.5 \times 24 = 12 \, \text{dm}^3$$

8. Hydrogen gas burns according to the equation below:

$$2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(1)}$$

a. What volume of oxygen gas is needed to completely burn 8g of hydrogen gas?

 A_r of hydrogen is 2. 4g of hydrogen need 32g of oxygen, since from equation they react in the ratio 2:1. So 8g of hydrogen will need 64g of oxygen, this is 2 moles or 48 dm³ of oxygen

9. Methane burns according to the equation below:

$$CH_{4(g)}$$
 + $2O_{2(g)}$ \longrightarrow $CO_{2(g)}$ + $2H_2O_{(1)}$

a. What volume of carbon dioxide is produced at RTP from the complete combustion of 64g of methane?

 M_r of methane is 16. So moles of methane present: n=mass/ A_r =64/16= 4 moles of methane burn. From the equation 1 mole of methane produces 1 mole of carbon dioxide. 64g of methane is 4 moles, so this will produce 4 moles of carbon dioxide. 1 mole occupies 24 dm³, so 4 moles will occupy 96 dm³